On Computing Minimal Equivalent Subformulas
نویسندگان
چکیده
A propositional formula in Conjunctive Normal Form (CNF) may contain redundant clauses — clauses whose removal from the formula does not affect the set of its models. Identification of redundant clauses is important because redundancy often leads to unnecessary computation, wasted storage, and may obscure the structure of the problem. A formula obtained by the removal of all redundant clauses from a given CNF formula F is called a Minimal Equivalent Subformula (MES) of F . This paper proposes a number of efficient algorithms and optimization techniques for the computation of MESes. Previous work on MES computation proposes a simple algorithm based on iterative application of the definition of a redundant clause, similar to the well-known deletionbased approach for the computation of Minimal Unsatisfiable Subformulas (MUSes). This paper observes that, in fact, most of the existing algorithms for the computation of MUSes can be adapted to the computation of MESes. However, some of the optimization techniques that are crucial for the performance of the state-of-the-art MUS extractors cannot be applied in the context of MES computation, and thus the resulting algorithms are often not efficient in practice. To address the problem of efficient computation of MESes, the paper develops a new class of algorithms that are based on the iterative analysis of subsets of clauses. The experimental results, obtained on representative problem instances, confirm the effectiveness of the proposed algorithms. The experimental results also reveal that many CNF instances obtained from the practical applications of SAT exhibit a large degree of redundancy.
منابع مشابه
Refining Unsatisfiable Cores in Incremental SAT Solving
Incremental SAT solving is used in many applications in the area of electronic design automation. The extraction of unsatisfiable subformulas of a propositional logic formula, as used in verification tools and MaxSAT algorithms, is an important feature. In this work we propose a simple refinement strategy for extracting unsatisfiable subformulas, which does not produce minimal subformulas, but ...
متن کاملφ φ φ φ φ φ k From Max - SAT to Min - UNSAT : Insights and Applications
This report describes a strong connection between maximum satisfiability and minimally-unsatisfiable subfor-mulas of any constraint system, as well as techniques for exploiting it. Focusing on CNF formulas, we explore this relationship and present novel algorithms for extracting minimally-unsatisfiable subformulas, including one that finds all such subformulas. We present experimental results s...
متن کاملTracking Unsatisfiable Subformulas from Reduced Refutation Proof
Explaining the causes of infeasibility of Boolean formulas has many practical applications in various fields. A small unsatisfiable subformula provides a succinct explanation of infeasibility and is valuable for applications. In recent years finding unsatisfiable subformulas has been addressed frequently by research works, mostly based on the SAT solvers with DPLL backtrack-search algorithm. Ho...
متن کاملFinding Unsatisfiable Subformulas with Stochastic Method
Explaining the causes of infeasibility of Boolean formulas has many practical applications in various fields. A small unsatisfiable subformula provides a succinct explanation of infeasibility and is valuable for applications. In recent years the problem of finding unsatisfiable subformulas has been addressed frequently by research works, which are mostly based on the SAT solvers with DPLL backt...
متن کاملGrounding with Bounds
Grounding is the task of reducing a first-order theory to an equivalent propositional one. Typical grounders work on a sentence-by-sentence level, substituting variables by domain elements and simplifying where possible. In this work, we propose a method for reasoning on the first-order theory as a whole to optimize the grounding process. Concretely, we develop an algorithm that computes bounds...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012